
JOURNAL OF COMPUTATIONAL PHYSICS 82, 487491 (1989)

Note

Implementation of
a Random Number Generator in OCCAM

In this note we want to communicate the implementation of a shift-bit register
random number generator on a transputer system. Such transputer systems have
now become widely available and are used for large scale simulations. As a matter
of fact, we are currently assembling a large number of these transputers to build a
parallel supercomputing structure for the Condensed Matter Theory Group at the
University of Mainz.

Among the simulations already performed using transputer-based parallel com-
puting structures are those of neural networks [l], lattice gauge theory [2], and
Monte Carlo simulations of the Ising model [3,4], using the micro canonical
ensemble method [S].

Monte Carlo and other simulation methods [6] rely on high-quality random
numbers. For such simulations they should have no correlations and the cycle
length must be extremely long (for many simulations the cycle length of the linear
congruential random number generators is by far too small!). Recently it has
become evident that linear congruential random number generators exhibit correla-
tions leading to subtle errors in the results of some Monte Carlo simulations [7-91.
In these simulations one is studying the dynamic evolution of a system in non-equi-
librium. An initially stable system is brought to a thermodynamically unstable non-
equilibrium state by a (temperature) quench from the one into the two-phase region
[9]. During the subsequent time evolution, the physical instability of the system to
the long wavelength perturbations is responsible for amplifying not only the ther-
mal fluctuations but also the correlations present in the initial postquench state. If
the random number generator used in MC simulations of such systems has some
inherent correlations then these get amplified due to the long wavelength instability
of the system. In this sense such physical systems act as amplifiers of correlations
that seem not to be dealt with in the usual statistical tests.

In the above described physics application one observes, for example, that the
system exhibits after some time an unphysical slab structure. Also the order
parameter and the energy evolution after a quench exhibit unphysical results.

The linear congruential random number generator [l&12]

xi+ l s ax, mod m

which generates recursively from a seed x,, a sequence of pseudo random numbers
.xi shows dramatic correlations leading to unphysical results [7, 81. These were
observed for mulipliers

487
0021-9991/89 $3.00

Copywghf “ 1989 by Academic Press. Inc.
All rights of reproductmn m any lorm reserved

488 PAUL, HEERMANN, AND DESAI

a = 65539, a = 16807

with the modulo m = 2” - 1 in simulations of the domain growth process. Also the
modulo generator RANP

a = 1664525. m = 232

implemented on the transputer development systems TDS [13, 141 for the trans-
puter T414/T800 shows these correlations. There are suggestions for other choices
of multipliers [15, 163 which in a certain statistical sense are optimal. It should be
noted here that one of these optimal choices indeed is a = 16807. However, the
simulations show that there are possibly very longrange correlations among the
random numbers generated with this multiplier not accounted for in optimality
criteria of the statistical tests. Those are the ones creating the unphysical simulation
results.

In the studies of the domain growth problem it was found empirically that the
shift-bit register generator of Tausworth [171 (or F(r, s, @) in the nomenclature of
Marsaglia [193) gave much better results. The simple test of d-space nonunifor-
mity, i.e., the filling of a d-dimensional lattice using consecutive random numbers,
reveals that the shift-bit register generator is superior to the linear congruential
generator in these applications.

The shift-bit register generator is a generalization of the linear congruential
generator. New pseudo random numbers are generated from the previously
generated ones by the recursion relation

Instead of this full relation one usually takes the linear recursion

on the space of (0, 1). The operation + ‘is then the exclusive-or operator (> < in
OCCAM). The most popular choice for the pair (p, q) is (250, 103) [181 and is
known as the “R250.”

The program listing shows the implementation of this algorithm in the OCCAM
programming language. This program was run and tested on the multitransputer
system of the Condensed Matter Theory Group at the University of Mainz.

Table I lists the results of test runs using the random number generator R250.
These results are not meant to test the quality of the random number generator, but
.to give a guidance for those who have implemented the program given here. Given
are the seed value, the sample size, and the values obtained for the mean, the
standard deviation, the skewness, and the excess. Let sk with k = 2, 3,4 denote the
central moments with respect to the mean; then the sample skewness and the
sample excess are defined as

skew = (s~/s?)~“~

excess = (s4/sr)’ - 3.

RANDOMNUMBER GENERATOR 489

TABLE I

Results of Test Runs of the OCCAM Version of the Random Number Generator R250
Using the Seed Value of 4711

Sample size
Time/number Time(RANP)

Mean Std. dev. Skew Excess (s) (s)

10’ 0.4818 0.2909 + 0.064 - 1.125 2.48 x 10 ’ 2.64 x 10 ’
10” 0.4931 0.2880 -0.041 - 1.194 2.31 x lo-’ 2.63 x lo-’
lo5 0.5007 0.2891 - 0.002 - 1.202 2.31 x 10-j 2.63 x lo-’
10h 0.5004 0.2888 -0.003 - 1.201 2.31 x lo-’ 2.63 x lo-’

As regards to the timing (note that the results quoted are for a single transputer),
we found that the R250 is just as fast as the conventional generator. Hence nothing
is lost with respect to time but much is gained with respect to accuracy in Monte
Carlo simulations.

ALGORITHM. OCCAM version of the random number generator R250.

PROC r250 (VAL INT n.f, [lOOOl] REAL32 x.f, [251] INT32 m.f)

- The array m.f has to be initialized with 250 integer32 random
- numbers before the first call of r250 (using for instance the
- built in RANP random number generator). In this example the
~ maximum possible number of random numbers to be generated in
- one call is taken to be 100000. nf is the actual number of
- numbers to be generated.

INT iloop, num.of.loops, looprest, ind:
INT irand, maxint:
REAL32 rmax:

SEQ
maxint : = # 7EEEEEEE
rmax : = REAL32 ROUND maxint
num.of.loops : = n.f/250
loop.rest := n.f REM 250
irand := 1
SEQ iloop = 1 FOR num.of.loops

SEQ
SEQ ind = 1 FOR 147

SEQ
m.f[ind] := m.f[ind] > < p.f[ind + 1031
conversion (x.f[irand], m.f[ind])
irand : = irand + 1

SEQ ind x 1 FOR 103
SEQ

m.f[ind + 1471 : = m.f[ind + 1471 > < m.f[ind]
conversion (x.f[irand], m.f[ind + 1471)
irand : = irand + 1

490 PAUL, HEERMANN, AND DESAI

IF
loop.rest = 0

SKIP
loop.rest < = 147

SEQ ind = 1 FOR loop.rest

SEQ
m.f[ind] : = m.f[ind] > < m.f[ind + 1033
conversion (x.f.[irand, m.f[ind])
irand : = irand + 1

loop.rest > 147

SEQ
SEQ ind = 1 FOR 147

SEQ
m.f.[ind] := m.f[ind] > < m.f[ind + 1031
conversion (x.f[irand], m.f[ind])
irand : = irand + 1

SEQ ind = 1 FOR (loop.rest - 147)

SEQ
m.f[ind + 1471 := m.f[ind + 1471 > i m.f[ind]
conversion (x.f[irand], m.f[ind + 1473)
irand : = irand + 1

ACKNOWLEDGMENTS

We would like to thank K. Binder for the many stimulating discussions. Also partial support from the
Sonderforschungsberich 41 is gratefully acknowledged.

REFERENCES

1. B. M. FORREST, D. ROWETH, N. STROUD, D. J. WALLACE, AND G. V. WILSON, Edinburgh Preprint
87/414 (1987).

2. S. DUANE, A. D. KENNEDY, B. J. PENDELTON, AND D. ROWETH, Phys. Lett. B 195, 216 (1987).
3. R. C. DESAI, D. W. HEERMANN, AND K. BINDER, J. Stat. Phys., in press.
4. D. W. HEERMANN AND R. C. DESAI, Compur. Phys. Commun., in press.
5. M. CREUTZ, Phys. Rev. Left. 50, 1411 (1983).
6. For recent reviews on Monte Carlo methods see D. W. HEERMANN, Introduction fo the Computer

Simulation Methods of Theoretical Physics (Springer-Verlag, Heidelberg, 1986); M. H. KALOS
AND P. A. WHITLOCK, Monte Carlo Methods, Vol. I (Wiley, New York, 1986); K. BINDER AND
D. W. HEERMANN, The Monte Carlo Method in Srarisrical Mechanics: An Introduction (Springer-
Verlag, Heidelberg, 1988).

7. A. MILCHEV, K. BINDER, AND D. W. HEERMANN, 2. Phys. E 63, 521 (1986).
8. TH. FILK, M. MARCU, AND K. FREDENHAGEN, Phys. Lett. B 165, 125 (1985).
9. For recent reviews on the tirst-order phase transitions see J. D. GUNTON, M. SAN MIGUEL, AND

P. S. SAHNI, in Phase Transitions and Critical Phenomena, Vol. 8, edited by C. Domb and
J. L. Lebowitz (Academic Press, New York, 1984); K. BINDER AND D. W. HEERMANN, in Scaling
Phenomena in Disordered Systems, edited by R. Pynn and T. Skjeltrop (Plenum, New York, 1985),
p. 205; H. FURUKAWA, Adu. Phys. 34, 703 (1985).

10. D. KNUTH, The Art of Computer Programming, Vol. 2 (Addison-Wesly, Reading, MA, 1969).
11. J. H. AHRENS AND U. DIETER, Pseudo Random Numbers (Wiley, New York, 1979).

RANDOM NUMBER GENERATOR 491

12. D. H. LEHMER, in Proceedings, 2nd Symposium on Large-Scale Digital Computing Machinery
(Harvard Univ. Press, Cambridge, MA, 1951), p. 142.

13. OCCAM Programming Maunual (Prentice-Hall, London, 1984).
14. TDS Maunual (INMOS, Cambridge, 1987).
15. I. BOROSH AND H. NIEDERREITER, BIT 23, 65 (1983).
16. G. S. FISHMAN AND L. R. MOORE, SIAM J. Sci. Stat. Cornput., I, 7 (1986).
17. R. C. TAUSWORTH, Math. Compur. 19, 201 (1965).
18. S. KIRKPATRICK AND E. P. STOLL, J. Compuf. Phys. 40, 517 (1981).
19. G. MARSAGLIA AND L.-H. TSAY, Linear Algebra Appl. 67, 147 (1985).

RECEIVED: January 5, 1988; REVISED: August 11, 1988

W. PAUL
DIETER W. HEERMANN

RASHMI C. DESAI*

Institut fiir Physik
Johannes-Gutenberg Universitiit
Staudinger Weg 7, 6500 Maim

West Germany

* Permanent address: University of Toronto, Department of Physics, Toronto MSS IA7. Canada.

